Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.417
Filtrar
1.
Adv Exp Med Biol ; 1444: 51-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467972

RESUMO

Major histocompatibility complex (MHC) class II molecules play a crucial role in immunity by presenting peptide antigens to helper T cells. Immune cells are generally tolerant to self-antigens. However, when self-tolerance is broken, immune cells attack normal tissues or cells, leading to the development of autoimmune diseases. Genome-wide association studies have shown that MHC class II is the gene most strongly associated with the risk of most autoimmune diseases. When misfolded self-antigens, called neoself antigens, are associated with MHC class II molecules in the endoplasmic reticulum, they are transported by the MHC class II molecules to the cell surface without being processed into peptides. Moreover, neoself antigens that are complexed with MHC class II molecules of autoimmune disease risk alleles exhibit distinct antigenicities compared to normal self-antigens, making them the primary targets of autoantibodies in various autoimmune diseases. Elucidation of the immunological functions of neoself antigens presented on MHC class II molecules is crucial for understanding the mechanism of autoimmune diseases.


Assuntos
Doenças Autoimunes , Estudo de Associação Genômica Ampla , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Autoanticorpos , Autoantígenos/genética , Antígenos HLA , Peptídeos/genética
2.
Clin Genet ; 105(4): 406-414, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214412

RESUMO

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Mutação , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefrite Hereditária/diagnóstico , Hematúria/genética , Proteinúria/genética
3.
J Pathol ; 262(2): 161-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37929639

RESUMO

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Penfigoide Bolhoso , Animais , Camundongos , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Receptores de IgG/genética , Autoantígenos/genética , Colágenos não Fibrilares/genética , Camundongos Endogâmicos C57BL , Autoanticorpos , Imunoglobulina G
4.
Genes (Basel) ; 14(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895184

RESUMO

Epidermolysis bullosa (EB), characterized by defective adhesion of the epidermis to the dermis, is a heterogeneous disease with many subtypes in human patients and domestic animals. We investigated two unrelated cats with recurring erosions and ulcers on ear pinnae, oral mucosa, and paw pads that were suggestive of EB. Histopathology confirmed the diagnosis of EB in both cats. Case 1 was severe and had to be euthanized at 5 months of age. Case 2 had a milder course and was alive at 11 years of age at the time of writing. Whole genome sequencing of both affected cats revealed independent homozygous variants in COL17A1 encoding the collagen type XVII alpha 1 chain. Loss of function variants in COL17A1 lead to junctional epidermolysis bullosa (JEB) in human patients. The identified splice site variant in case 1, c.3019+1del, was predicted to lead to a complete deficiency in collagen type XVII. Case 2 had a splice region variant, c.769+5G>A. Assessment of the functional impact of this variant on the transcript level demonstrated partial aberrant splicing with residual expression of wildtype transcript. Thus, the molecular analyses provided a plausible explanation of the difference in clinical severity between the two cases and allowed the refinement of the diagnosis in the affected cats to JEB. This study highlights the complexity of EB in animals and contributes to a better understanding of the genotype-phenotype correlation in COL17A1-related JEB.


Assuntos
Epidermólise Bolhosa Juncional , Humanos , Gatos/genética , Animais , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/veterinária , Colágenos não Fibrilares/genética , Colágenos não Fibrilares/metabolismo , Autoantígenos/genética , Pele/metabolismo
5.
Cell Rep ; 42(10): 113178, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742188

RESUMO

Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.


Assuntos
Autoantígenos , Proteínas Cromossômicas não Histona , Animais , Camundongos , Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Camundongos Endogâmicos
6.
EMBO J ; 42(17): e114534, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37469281

RESUMO

Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.


Assuntos
Proteínas Cromossômicas não Histona , Nucleossomos , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/genética , Centrômero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Int J Biochem Cell Biol ; 161: 106441, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356415

RESUMO

Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.


Assuntos
Neoplasias , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , Neoplasias/genética , Proteínas de Ligação a RNA/genética , Genes Supressores de Tumor
8.
Nat Commun ; 14(1): 3378, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291228

RESUMO

B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.


Assuntos
Linfócitos B , Melanoma , Humanos , Melanoma/genética , Anticorpos , Imunidade Humoral , Autoantígenos/genética , Microambiente Tumoral
9.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129573

RESUMO

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Humanos , Histonas/genética , Proteína Centromérica A/genética , Células HeLa , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromatina , Centrômero/metabolismo , Chaperonas Moleculares/metabolismo , Instabilidade Cromossômica , Autoantígenos/genética , Fator 1 de Modelagem da Cromatina/genética
10.
J Proteome Res ; 22(6): 1800-1815, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37183442

RESUMO

Understanding autoimmunity to endogenous proteins is crucial in diagnosing and treating autoimmune diseases. In this work, we developed a user-friendly AAgAtlas portal (http://biokb.ncpsb.org.cn/aagatlas_portal/index.php#), which can be used to search for 8045 non-redundant autoantigens (AAgs) and 47 post-translationally modified AAgs against 1073 human diseases that are prioritized by a credential score developed by multisource evidence. Using AAgAtlas, the immunogenic properties of human AAgs was systematically elucidated according to their genetic, biophysical, cytological, expression profile, and evolutionary characteristics. The results indicated that human AAgs are evolutionally conserved in protein sequence and enriched in three hydrophilic and polar amino acid residues (K, D, and E) that are located at the protein surface. AAgs are enriched in proteins that are involved in nucleic acid binding, transferase, and the cytoskeleton. Genome, transcriptome, and proteome analyses further indicated that AAb production is associated with gene variance and abnormal protein expression related to the pathological activities of different tumors. Collectively, our data outlines the hallmarks of human AAgs that facilitate the understanding of humoral autoimmunity and the identification of biomarkers of human diseases.


Assuntos
Autoantígenos , Doenças Autoimunes , Humanos , Autoantígenos/genética , Autoanticorpos , Doenças Autoimunes/genética , Autoimunidade , Sequência de Aminoácidos
11.
J Nephrol ; 36(5): 1415-1423, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097554

RESUMO

BACKGROUND: Alport syndrome is caused by COL4A3, COL4A4, or COL4A5 gene mutations. The present study aims to compare the clinicopathological features, gene mutations, and outcome of Chinese children with different forms of Alport syndrome. METHODS: One hundred twenty-eight children from 126 families diagnosed with Alport syndrome through pathological and genetic examination between 2003 and 2021 were included in this single-center retrospective study. The laboratory and clinicopathological features of the patients with different inheritance patterns were analyzed. The patients were followed-up for disease progression and phenotype-genotype correlation. RESULTS: Of the 126 Alport syndrome families, X-linked forms accounted for 77.0%, autosomal recessive for 11.9%, autosomal dominant for 7.1%, and digenic for 4.0%. Among the patients, 59.4% were males and 40.6% were females. Altogether, 114 different mutations were identified in 101 patients from 99 families by whole-exome sequencing, of which 68 have not been previously reported. The most prevalent type of mutation was glycine substitution, which was identified in 52.1%, 36.7%, and 60% of the patients with X-linked Alport syndrome, autosomal recessive and autosomal dominant Alport syndrome, respectively. At the end of a median follow up of 3.3 (1.8-6.3) years, Kaplan-Meier curves showed kidney survival was significantly lower in autosomal recessive compared to X-linked Alport syndrome (P = 0.004). Pediatric patients with Alport syndrome seldom presented extrarenal involvement. CONCLUSIONS: X-linked Alport syndrome is the most frequent form found in this cohort. Progression was more rapid in autosmal recessive than in X-linked Alport syndrome.


Assuntos
Nefrite Hereditária , Humanos , Masculino , Feminino , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Estudos Retrospectivos , População do Leste Asiático , Colágeno Tipo IV/genética , Linhagem , Mutação , Autoantígenos/genética
12.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982595

RESUMO

Alport syndrome (AS) is a hereditary kidney disease caused by pathogenic variants in COL4A3 and COL4A4 genes with autosomal recessive or autosomal dominant transmission or in the COL4A5 gene with X-linked inheritance. Digenic inheritance was also described. Clinically it is associated with microscopic hematuria, followed by proteinuria and chronic renal insufficiency with end-stage renal disease in young adults. Nowadays, there is no curative treatment available. The inhibitors of RAS (renin-angiotensin system) since childhood slow the progression of the disease. Sodium-glucose cotransporter-2 inhibitors seem to be promising drugs from DAPA-CKD (dapagliflozin-chronic kidney disease) study, but only a limited number of patients with Alport syndrome was included. Endothelin type A receptor and angiotensin II type 1 receptor combined inhibitors, and lipid-lowering agents are used in ongoing studies in patients with AS and focal segmental glomerulosclerosis (FSGS). Hydroxychloroquine in AS is studied in a clinical trial in China. Molecular genetic diagnosis of AS is crucial not only for prognosis prediction but also for future therapeutic options. Different types of mutations will require various types of gene, RNA, or protein therapy to improve the function, the of final protein product.


Assuntos
Nefrite Hereditária , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Criança , Humanos , Adulto Jovem , Autoantígenos/genética , Colágeno Tipo IV/genética , Hematúria , Mutação , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Insuficiência Renal Crônica/complicações
13.
Exp Dermatol ; 32(7): 965-974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995066

RESUMO

Dermatomyositis (DM) is an idiopathic inflammatory myopathy belonging to the spectrum of autoimmune connective tissue diseases. DM patients present with antinuclear antibodies against Mi-2, also known as Chromodomain-helicase-DNA-binding protein 4 (CHD4). CHD4 is upregulated in DM skin biopsies and could potentially affect DM pathophysiology as it binds endogenous DNA with a high affinity (KD = 0.2 nM ± 0.076 nM) and forms CHD4-DNA complexes. The complexes are localized in the cytoplasm of UV-radiated and transfected HaCaTs and amplify the expression of interferon (IFN) regulated genes and the amount of functional CXCL10 protein stronger than DNA alone. The enhancement of the type I IFN pathway activation in HaCaTs through CHD4-DNA signalling suggests a possible mechanism for the sustainment of the pro-inflammatory vicious cycle in DM skin lesions.


Assuntos
Complexo Antígeno-Anticorpo , Dermatomiosite , Humanos , Autoantígenos/genética , DNA , DNA Helicases/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase
14.
Transl Vis Sci Technol ; 12(3): 3, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857066

RESUMO

Purpose: Usher syndrome (USH) is the most common syndromic inherited retinal disease, causing retinitis pigmentosa and sensorineural hearing loss. We reported previously that a nonsense mutation in the centrosome-associated protein CEP250 gene (encoding C-Nap1) causes atypical USH in patients of Iranian Jewish origin. To better characterize CEP250, we aimed to generate and study a knockout (KO) mouse model for Cep250. Methods: Mice heterozygous for a "knockout-first" Cep250 construct were generated and bred with Cre recombinase mice to generate the null allele and produce homozygous Cep250 KO mice. Retinal function was evaluated by full-field electroretinography (ffERG) at variable ages, and retinal structure changes were examined using histological analysis. Hearing thresholds were detected using auditory brainstem response (ABR) at the age of 20 months. Results: The Cep250 KO mouse model was generated by activating a construct harboring a deletion of exons 6 and 7. At 6 months, the ffERG was normal, but it decreased gradually with age. For both photopic and scotopic ffERG responses, very low amplitudes were evident at 20 months. Histological analysis confirmed late-onset retinal degeneration. ABR tests illustrated that hearing threshold significantly increased at the age of 20 months. Conclusions: Although most USH animal models have normal retinal function and structure, the Cep250 KO mouse model shows both retinal degeneration and hearing loss with a relatively late age of onset. This model may shed more light on CEP250-associated retinal and hearing deficits and represents an efficient platform for the development of treatment modalities for USH. Translational Relevance: Our study demonstrates better understanding of Cep250-associated retinal and hearing disease in a mouse model and may help in developing more efficient gene therapy modalities.


Assuntos
Proteínas de Ciclo Celular , Perda Auditiva Neurossensorial , Degeneração Retiniana , Animais , Camundongos , Perda Auditiva Neurossensorial/genética , Irã (Geográfico) , Camundongos Knockout , Degeneração Retiniana/genética , Proteínas de Ciclo Celular/genética , Autoantígenos/genética
15.
EMBO J ; 42(6): e111965, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744604

RESUMO

Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.


Assuntos
Histonas , Nucleossomos , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Microscopia Crioeletrônica , Histonas/metabolismo , Proteínas de Ligação a DNA/química , Animais , Galinhas
16.
J Biol Chem ; 299(4): 103065, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841486

RESUMO

The peptide spanning residues 35 to 55 of the protein myelin oligodendrocyte glycoprotein (MOG) has been studied extensively in its role as a key autoantigen in the neuroinflammatory autoimmune disease multiple sclerosis. Rodents and nonhuman primate species immunized with this peptide develop a neuroinflammatory condition called experimental autoimmune encephalomyelitis, often used as a model for multiple sclerosis. Over the last decade, the role of citrullination of this antigen in the disease onset and progression has come under increased scrutiny. We recently reported on the ability of these citrullinated MOG35-55 peptides to aggregate in an amyloid-like fashion, suggesting a new potential pathogenic mechanism underlying this disease. The immunodominant region of MOG is highly conserved between species, with the only difference between the murine and human protein, a polymorphism on position 42, which is serine in mice and proline for humans. Here, we show that the biophysical and biochemical behavior we previously observed for citrullinated murine MOG35-55 is fundamentally different for human and mouse MOG35-55. The citrullinated human peptides do not show amyloid-like behavior under the conditions where the murine peptides do. Moreover, we tested the ability of these peptides to stimulate lymphocytes derived from MOG immunized marmoset monkeys. While the citrullinated murine peptides did not produce a proliferative response, one of the citrullinated human peptides did. We postulate that this unexpected difference is caused by disparate antigen processing. Taken together, our results suggest that further study on the role of citrullination in MOG-induced experimental autoimmune encephalomyelitis is necessary.


Assuntos
Citrulinação , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Animais , Humanos , Camundongos , Amiloide , Proteínas Amiloidogênicas , Autoantígenos/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/induzido quimicamente , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/química , Fragmentos de Peptídeos/química
17.
Mol Carcinog ; 62(4): 561-572, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36705466

RESUMO

Cancerous inhibitor of protein phosphatase 2A (Cip2a) is an oncoprotein, playing important roles in tumor progression. However, the underlying mechanisms by which Cip2a promotes tumor aggressiveness in NSCLC remain to be further investigated. In this study, we found that Cip2a expression is elevated in NSCLC and correlates with poor prognosis. Knockdown of Cip2a significantly reduced the ability of cell proliferation, invasion, and metastasis of NSCLC both in vitro and in vivo. Furthermore, we found that Cip2a promotes tumor progression partly by inducing arginine biosynthesis, and knockdown of Cip2a exhibited a significantly increased sensitivity to arginine deprivation and mTOR inhibition. In addition, we found that p53 mutants in NSCLC cells increased Cip2a expression by inhibiting the activity of wild-type p53. Our findings provide new insights into the mechanisms of Cip2a in promoting tumor progression and suggest that Cip2a represents a potential therapeutic target for treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53 , Proliferação de Células/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Autoantígenos/uso terapêutico , Linhagem Celular Tumoral
18.
Semin Cell Dev Biol ; 135: 24-34, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35422390

RESUMO

Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
19.
Pediatr Nephrol ; 38(3): 687-695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35759000

RESUMO

BACKGROUND: Children with persistent, isolated microscopic hematuria typically undergo a limited diagnostic workup and are monitored for signs of kidney disease in long-term longitudinal follow-up, which can delay diagnosis and allow disease progression in some cases. METHODS: To determine the clinical utility of genetic screening in this population, we performed targeted genetic testing using a custom, 32-gene next-generation sequencing panel for progressive kidney disease on children referred to the Texas Children's Hospital Pediatric Nephrology clinic for persistent, microscopic hematuria (n = 30; cohort 1). Patients with microscopic hematuria identified by urinalysis on at least two separate occasions were eligible for enrollment, but those with other evidence of kidney disease were excluded. Results were analyzed for sequence variants using the American College of Medical Genetics and Genomics (ACMG) guideline for data interpretation and were validated using a secondary analysis of a dataset of children with hematuria and normal kidney function who had undergone genetic testing as part of an industry-sponsored program (cohort 2; n = 67). RESULTS: In cohort 1 33% of subjects (10/30) had pathogenic or likely pathogenic (P/LP) variants in the type IV collagen genes (COL4A3/A4/A5), and 10% (3/30) had variants of uncertain significance in these genes. The high diagnostic rate in type IV collagen genes was confirmed in cohort 2, where 27% (18/67) of subjects had P/LP variants in COL4A3/A4/A5 genes. CONCLUSIONS: Children with persistent, isolated microscopic hematuria have a high likelihood of having pathogenic variants in type IV collagen genes and genetic screening should be considered. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Hematúria , Nefrite Hereditária , Criança , Humanos , Hematúria/diagnóstico , Hematúria/genética , Colágeno Tipo IV/genética , Nefrite Hereditária/genética , Linhagem , Rim/patologia , Autoantígenos/genética , Mutação
20.
Kidney Int ; 103(2): 297-303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36191868

RESUMO

Antibody-mediated autoimmune pathologies like membranous nephropathy are difficult to model, particularly in the absence of local target antigen expression in model organisms such as mice and rats; as is the case for phospholipase A2 receptor 1 (PLA2R1), the major autoantigen in membranous nephropathy. Here, we generated a transgenic mouse line expressing the full-length human PLA2R1 in podocytes, which has no kidney impairment after birth. Beginning from the age of three weeks, these mice spontaneously developed anti-human PLA2R1 antibodies, a nephrotic syndrome with progressive albuminuria and hyperlipidemia, and the typical morphological signs of membranous nephropathy with granular glomerular deposition of murine IgG in immunofluorescence and subepithelial electron-dense deposits by electron microscopy. Importantly, human PLA2R1-expressing Rag2-/- mice, which lack mature and functioning B and T lymphocytes, developed neither anti-PLA2R1 antibodies nor proteinuria. Thus, our work demonstrates that podocyte expression of human PLA2R1 can induce membranous nephropathy with an underlying antibody-mediated pathogenesis in mice. Importantly, this antibody-mediated model enables proof-of-concept evaluations of antigen-specific treatment strategies, e.g., targeting autoantibodies or autoantibody-producing cells, and may further help understand the autoimmune pathogenesis of membranous nephropathy.


Assuntos
Glomerulonefrite Membranosa , Podócitos , Animais , Humanos , Camundongos , Ratos , Autoanticorpos , Autoantígenos/genética , Glomerulonefrite Membranosa/diagnóstico , Glomérulos Renais/patologia , Podócitos/patologia , Receptores da Fosfolipase A2/genética , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...